I'm developing a USB device driver for a microcontroller (Atmel/Microchip SAMD21, but I think the question is a general one). I need multiple endpoints for control & data, and the USB hardware uses per-endpoint descriptors to (among other things) locate buffers for input and output data.
Since IN data is polled at the host's discretion it makes sense that each endpoint has its own IN buffer, so that any endpoint's data (if it has any to send) is immediately available when polled.
But as far as incoming data from SETUP & OUT transactions is concerned, it occurs to me that I can save memory by configuring all endpoints to use a shared buffer. It seems wasteful for each endpoint to have its own buffer when, given the nature of USB transactions, only one such transaction can occur at a time.
Obviously this approach requires that transaction interrupts are handled sufficiently quickly that the shared buffer is freed and prepared for a new transaction in time for whatever the next transaction might be - but this is already a requirement for the control endpoint, where some SETUP transactions are immediately followed by an OUT.
So, assuming the timing is feasible, is there any other reason why such an approach wouldn't work?